33 research outputs found

    ChatGPT: Vision and Challenges

    Get PDF
    Artificial intelligence (AI) and machine learning have changed the nature of scientific inquiry in recent years. Of these, the development of virtual assistants has accelerated greatly in the past few years, with ChatGPT becoming a prominent AI language model. In this study, we examine the foundations, vision, research challenges of ChatGPT. This article investigates into the background and development of the technology behind it, as well as its popular applications. Moreover, we discuss the advantages of bringing everything together through ChatGPT and Internet of Things (IoT). Further, we speculate on the future of ChatGPT by considering various possibilities for study and development, such as energy-efficiency, cybersecurity, enhancing its applicability to additional technologies (Robotics and Computer Vision), strengthening human-AI communications, and bridging the technological gap. Finally, we discuss the important ethics and current trends of ChatGPT

    ROUTER:Fog Enabled Cloud based Intelligent Resource Management Approach for Smart Home IoT Devices

    Get PDF
    There is a growing requirement for Internet of Things (IoT) infrastructure to ensure low response time to provision latency-sensitive real-time applications such as health monitoring, disaster management, and smart homes. Fog computing offers a means to provide such requirements, via a virtualized intermediate layer to provide data, computation, storage, and networking services between Cloud datacenters and end users. A key element within such Fog computing environments is resource management. While there are existing resource manager in Fog computing, they only focus on a subset of parameters important to Fog resource management encompassing system response time, network bandwidth, energy consumption and latency. To date no existing Fog resource manager considers these parameters simultaneously for decision making, which in the context of smart homes will become increasingly key. In this paper, we propose a novel resource management technique (ROUTER) for fog-enabled Cloud computing environments, which leverages Particle Swarm Optimization to optimize simultaneously. The approach is validated within an IoT-based smart home automation scenario, and evaluated within iFogSim toolkit driven by empirical models within a small-scale smart home experiment. Results demonstrate our approach results a reduction of 12% network bandwidth, 10% response time, 14% latency and 12.35% in energy consumption

    A Meta-learning based Stacked Regression Approach for Customer Lifetime Value Prediction

    Full text link
    Companies across the globe are keen on targeting potential high-value customers in an attempt to expand revenue and this could be achieved only by understanding the customers more. Customer Lifetime Value (CLV) is the total monetary value of transactions/purchases made by a customer with the business over an intended period of time and is used as means to estimate future customer interactions. CLV finds application in a number of distinct business domains such as Banking, Insurance, Online-entertainment, Gaming, and E-Commerce. The existing distribution-based and basic (recency, frequency & monetary) based models face a limitation in terms of handling a wide variety of input features. Moreover, the more advanced Deep learning approaches could be superfluous and add an undesirable element of complexity in certain application areas. We, therefore, propose a system which is able to qualify both as effective, and comprehensive yet simple and interpretable. With that in mind, we develop a meta-learning-based stacked regression model which combines the predictions from bagging and boosting models that each is found to perform well individually. Empirical tests have been carried out on an openly available Online Retail dataset to evaluate various models and show the efficacy of the proposed approach.Comment: 11 pages, 7 figure

    ChainsFormer: A Chain Latency-aware Resource Provisioning Approach for Microservices Cluster

    Full text link
    The trend towards transitioning from monolithic applications to microservices has been widely embraced in modern distributed systems and applications. This shift has resulted in the creation of lightweight, fine-grained, and self-contained microservices. Multiple microservices can be linked together via calls and inter-dependencies to form complex functions. One of the challenges in managing microservices is provisioning the optimal amount of resources for microservices in the chain to ensure application performance while improving resource usage efficiency. This paper presents ChainsFormer, a framework that analyzes microservice inter-dependencies to identify critical chains and nodes, and provision resources based on reinforcement learning. To analyze chains, ChainsFormer utilizes light-weight machine learning techniques to address the dynamic nature of microservice chains and workloads. For resource provisioning, a reinforcement learning approach is used that combines vertical and horizontal scaling to determine the amount of allocated resources and the number of replicates. We evaluate the effectiveness of ChainsFormer using realistic applications and traces on a real testbed based on Kubernetes. Our experimental results demonstrate that ChainsFormer can reduce response time by up to 26% and improve processed requests per second by 8% compared with state-of-the-art techniques.Comment: 15 page

    Deep Learning Based Forecasting of Indian Summer Monsoon Rainfall

    Get PDF
    Accurate short range weather forecasting has significant implications for various sectors. Machine learning based approaches, e.g., deep learning, have gained popularity in this domain where the existing numerical weather prediction (NWP) models still have modest skill after a few days. Here we use a ConvLSTM network to develop a deep learning model for precipitation forecasting. The crux of the idea is to develop a forecasting model which involves convolution based feature selection and uses long term memory in the meteorological fields in conjunction with gradient based learning algorithm. Prior to using the input data, we explore various techniques to overcome dataset difficulties. We follow a strategic approach to deal with missing values and discuss the models fidelity to capture realistic precipitation. The model resolution used is (25 km). A comparison between 5 years of predicted data and corresponding observational records for 2 days lead time forecast show correlation coefficients of 0.67 and 0.42 for lead day 1 and 2 respectively. The patterns indicate higher correlation over the Western Ghats and Monsoon trough region (0.8 and 0.6 for lead day 1 and 2 respectively). Further, the model performance is evaluated based on skill scores, Mean Square Error, correlation coefficient and ROC curves. This study demonstrates that the adopted deep learning approach based only on a single precipitation variable, has a reasonable skill in the short range. Incorporating multivariable based deep learning has the potential to match or even better the short range precipitation forecasts based on the state of the art NWP models.Comment: 14 pages, 14 figures. The manuscript is under review with journal 'Transactions on Geoscience and Remote Sensing
    corecore